一、常用压裂工艺
压裂工艺技术是影响压裂增产效果的重要因素,需要根据不同油气层的地质条件、井深状况等因素选择与之相适应的压裂工艺技术,以便能够顺利执行压裂并取得较好的增产效果。 目前常用的压裂工艺技术有:
1、限流法压裂
通过严格限制炮眼的数量和直径,并以尽可能大的注入排量进行施工,利用压裂液流经孔眼时产生的炮眼摩阻大幅提高井底压力,并迫使压裂液分流,使破裂压力接近的地层相继被压开,达到一次加砂能够同时处理多层的目的。

2、分段压裂技术
分段压裂是在完井套管串上封隔器和压裂滑套,将油气储层分成若干段,用同一套泵车依次单段压裂。从而达到最大化储层渗流能力、提高导流性和生产力。分段压裂技术是一种有效性强,针对性突出、可控性好的精细储层改造技术体系。

3、水力喷射压裂技术
水力喷射压裂技术是利用高速和高压流体携带砂体进行射孔,打开地层与井筒之间的通道后,提高流体排量,从而在地层中打开裂缝的水力压裂技术。

虽然水力压裂技术是油气资源稳定增产的一个重要的技术保证,在全球范围内被广泛使用。然而,“Every coin has two sides”,水力压裂也是如此。
4、选择性压裂技术
利用油层内不同部位或各油层间吸液能力不同的特点,通过投入暂堵剂封堵已有裂隙,以便压裂液分流,从而在其它部位或层内压开新裂缝,达到选择性压裂的目的。

此外,压裂液体系采用CO2,可以在地层中形成CO2泡沫,形成酸性液溶解地层颗粒,流动阻力小,在低渗透致密储层改造中具有无可比拟的优势。
高能气体压裂技术利用火药或火箭推进剂快速燃烧产生的高温高压气体,形成脉冲加载并控制压力上升速度,在井筒附近压开多方位的裂缝,沟通天然裂缝,从而达到增产増注。
二、技术展望
1. 超临界二氧化碳压裂技术
超临界二氧化碳拥有的神奇特性——密度接近于水;粘度接近于气体;表面张力接近于零;超临界二氧化碳钻井速度快,不含固相颗粒也不含水,对储层既没有伤害又没有任何污染。

此外,压裂液体系采用CO2,可以在地层中形成CO2泡沫,形成酸性液溶解地层颗粒,流动阻力小,在低渗透致密储层改造中具有无可比拟的优势。
2. 高能气体压裂技术利用火药或火箭推进剂快速燃烧产生的高温高压气体,形成脉冲加载并控制压力上升速度,在井筒附近压开多方位的裂缝,沟通天然裂缝,从而达到增产増注。

3. LPG压裂技术采用液化石油气(LPG)作为压裂液,主要成分为丙烷。它在地下与水力压裂的作用相同,可以与页岩气一起返排至地面,甚至无需分离可直接进入生产管线,对地层没有任何伤害。

4. 高速通道压裂技术采用脉冲加砂方式,携砂液中加入纤维使部分支撑剂聚集,中间形成高导流能力的通道。此处的支撑剂不再作为导流介质,而是作为支撑柱防止周围的通道壁发生断裂。

经过60余年的发展,压裂工艺技术在不断发展,压裂液、支撑剂也都有了新的突破,主要表现在:
1)压裂液粘度降低
页岩储层的压裂工艺强调获得更大的储层改造体积,但是常规压裂液粘度较大,流动性差,不能深入地层远端,难以形成复杂的裂缝网络沟通地层。

针对这一问题,目前大型压裂多采用新型滑溜水压裂液,在清水中加入少量减阻剂和表面活性剂,使其具有较低的粘度。

△Mitchell在开发Barnett页岩过程中,首次尝试滑溜水压裂液进行施工,获得了出人意料的效果
2)支撑剂密度降低
支撑剂强度越高,密度也会随之加大,沉降速度加快。在地层中过早沉降则难以形成较长的支撑裂逢,影响压裂效果。针对这一问题,目前逐渐兴起一类超低密度支撑剂,兼顾了低密度与高强度的特点。

△利用树脂覆膜技术,在核桃壳或多孔陶粒的表面裹一层树脂,改善了陶粒破碎的影响
结束语
从有水压裂到无水压裂,从直井压裂到水平井分段压裂,从常规的压裂技术到现在的体积改造技术,压裂技术不断进步的同时,为人类带来了丰富的油气资源。正如煤炭时代的结束不是因为地球上的煤烧光了,技术的发展将决定油气行业的未来。随着科技的加速跨界融合,未来压裂技术还会不断进步,我们对未来充满期待!
来源:玩泥浆的土博士