摘要:受 灰 狼 群 体 捕 食 行 为 的 启 发,Mirjalili等于 2014年提出了一种新型群体智能优化算法:灰狼优化算法。GWO通过模拟灰狼群体捕食行为,基于狼群群体协作的机制来达到优化的目的。 GWO算法具有结构简单、需要调节的参数少,容易实现等特点,其中存在能够自适应调整的收敛因子以及信息反馈机制,能够在局部寻优与全局搜索之间实现平衡,因此在对问题的求解精度和收敛速度方面都有良好的性能。
1.算法原理
灰狼属于犬科动物,被认为是顶级的掠食者,它们处于生物圈食物链的顶端。灰狼大多喜欢群居,每个群体中平均有5-12只狼。特别令人感兴趣的是,它们具有非常严格的社会等级层次制度,如图1所示。金字塔第一层为种群中的领导者,称为 α 。在狼群中 α 是具有管理能力的个体,主要负责关于狩猎、睡觉的时间和地方、食物分配等群体中各项决策的事务。金字塔第二层是 α 的智囊团队,称为 β 。 β 主要负责协助α 进行决策。当整个狼群的 α 出现空缺时,β 将接替 α 的位置。 β 在狼群中的支配权仅次于 α,它将 α 的命令下达给其他成员,并将其他成员的执行情况反馈给 α 起着桥梁的作用。金字塔第三层是 δ ,δ 听从 α 和 β 的决策命令,主要负责侦查、放哨、看护等事务。适应度不好的 α 和 β 也会降为 δ 。金字塔最底层是 ω ,主要负责种群内部关系的平衡。

此外,集体狩猎是灰狼的另一个迷人的社会行为。灰狼的社会等级在群体狩猎过程中发挥着重要的作用,捕食的过程在 α 的带领下完成。灰狼的狩猎包括以下 3个主要部分:
1)跟踪、追逐和接近猎物;
2)追捕、包围和骚扰猎物,直到它停止移动;
3)攻击猎物
1.1 包围猎物
在狩猎过程中,将灰狼围捕猎物的行为定义如下:


1.2 狩猎
灰狼能够识别猎物的位置并包围它们。当灰狼识别出猎物的位置后,β 和 δ 在 α 的带领下指导狼群包围猎物。在优化问题的决策空间中,我们对最佳解决方案(猎物的位置)并不了解。因此,为了模拟灰狼的狩猎行为,我们假设 α ,β 和 δ 更了解猎物的潜在位置。我们保存迄今为止取得的3个最优解决方案,并利用这三者的位置来判断猎物所在的位置,同时强迫其他灰狼个体(包括 ω )依据最优灰狼个体的位置来更新其位置,逐渐逼近猎物。狼群内个体跟踪猎物位置的机制如图2所示。






1 tic % 计时器 2 %% 清空环境变量 3 close all 4 clear 5 clc 6 format compact 7 %% 数据提取 8 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 9 load wine.mat 10 % 选定训练集和测试集 11 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 12 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; 13 % 相应的训练集的标签也要分离出来 14 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; 15 % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 16 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; 17 % 相应的测试集的标签也要分离出来 18 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; 19 %% 数据预处理 20 % 数据预处理,将训练集和测试集归一化到[0,1]区间 21 [mtrain,ntrain] = size(train_wine); 22 [mtest,ntest] = size(test_wine); 23 24 dataset = [train_wine;test_wine]; 25 % mapminmax为MATLAB自带的归一化函数 26 [dataset_scale,ps] = mapminmax(dataset',0,1); 27 dataset_scale = dataset_scale'; 28 29 train_wine = dataset_scale(1:mtrain,:); 30 test_wine = dataset_scale( (mtrain+1):(mtrain+mtest),: ); 31 %% 利用灰狼算法选择最佳的SVM参数c和g 32 SearchAgents_no=10; % 狼群数量,Number of search agents 33 Max_iteration=10; % 最大迭代次数,Maximum numbef of iterations 34 dim=2; % 此例需要优化两个参数c和g,number of your variables 35 lb=[0.01,0.01]; % 参数取值下界 36 ub=[100,100]; % 参数取值上界 37 % v = 5; % SVM Cross Validation参数,默认为5 38 39 % initialize alpha, beta, and delta_pos 40 Alpha_pos=zeros(1,dim); % 初始化Alpha狼的位置 41 Alpha_score=inf; % 初始化Alpha狼的目标函数值,change this to -inf for maximization problems 42 43 Beta_pos=zeros(1,dim); % 初始化Beta狼的位置 44 Beta_score=inf; % 初始化Beta狼的目标函数值,change this to -inf for maximization problems 45 46 Delta_pos=zeros(1,dim); % 初始化Delta狼的位置 47 Delta_score=inf; % 初始化Delta狼的目标函数值,change this to -inf for maximization problems 48 49 %Initialize the positions of search agents 50 Positions=initialization(SearchAgents_no,dim,ub,lb); 51 52 Convergence_curve=zeros(1,Max_iteration); 53 54 l=0; % Loop counter循环计数器 55 56 % Main loop主循环 57 while l<Max_iteration % 对迭代次数循环 58 for i=1:size(Positions,1) % 遍历每个狼 59 60 % Return back the search agents that go beyond the boundaries of the search space 61 % 若搜索位置超过了搜索空间,需要重新回到搜索空间 62 Flag4ub=Positions(i,:)>ub; 63 Flag4lb=Positions(i,:)<lb; 64 % 若狼的位置在最大值和最小值之间,则位置不需要调整,若超出最大值,最回到最大值边界; 65 % 若超出最小值,最回答最小值边界 66 Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % ~表示取反 67 68 % 计算适应度函数值 69 cmd = [' -c ',num2str(Positions(i,1)),' -g ',num2str(Positions(i,2))]; 70 model=svmtrain(train_wine_labels,train_wine,cmd); % SVM模型训练 71 [~,fitness]=svmpredict(test_wine_labels,test_wine,model); % SVM模型预测及其精度 72 fitness=100-fitness(1); % 以错误率最小化为目标 73 74 % Update Alpha, Beta, and Delta 75 if fitness<Alpha_score % 如果目标函数值小于Alpha狼的目标函数值 76 Alpha_score=fitness; % 则将Alpha狼的目标函数值更新为最优目标函数值,Update alpha 77 Alpha_pos=Positions(i,:); % 同时将Alpha狼的位置更新为最优位置 78 end 79 80 if fitness>Alpha_score && fitness<Beta_score % 如果目标函数值介于于Alpha狼和Beta狼的目标函数值之间 81 Beta_score=fitness; % 则将Beta狼的目标函数值更新为最优目标函数值,Update beta 82 Beta_pos=Positions(i,:); % 同时更新Beta狼的位置 83 end 84 85 if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score % 如果目标函数值介于于Beta狼和Delta狼的目标函数值之间 86 Delta_score=fitness; % 则将Delta狼的目标函数值更新为最优目标函数值,Update delta 87 Delta_pos=Positions(i,:); % 同时更新Delta狼的位置 88 end 89 end 90 91 a=2-l*((2)/Max_iteration); % 对每一次迭代,计算相应的a值,a decreases linearly fron 2 to 0 92 93 % Update the Position of search agents including omegas 94 for i=1:size(Positions,1) % 遍历每个狼 95 for j=1:size(Positions,2) % 遍历每个维度 96 97 % 包围猎物,位置更新 98 99 r1=rand(); % r1 is a random number in [0,1] 100 r2=rand(); % r2 is a random number in [0,1] 101 102 A1=2*a*r1-a; % 计算系数A,Equation (3.3) 103 C1=2*r2; % 计算系数C,Equation (3.4) 104 105 % Alpha狼位置更新 106 D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1 107 X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1 108 109 r1=rand(); 110 r2=rand(); 111 112 A2=2*a*r1-a; % 计算系数A,Equation (3.3) 113 C2=2*r2; % 计算系数C,Equation (3.4) 114 115 % Beta狼位置更新 116 D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2 117 X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2 118 119 r1=rand(); 120 r2=rand(); 121 122 A3=2*a*r1-a; % 计算系数A,Equation (3.3) 123 C3=2*r2; % 计算系数C,Equation (3.4) 124 125 % Delta狼位置更新 126 D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3 127 X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3 128 129 % 位置更新 130 Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7) 131 132 end 133 end 134 l=l+1; 135 Convergence_curve(l)=Alpha_score; 136 end 137 bestc=Alpha_pos(1,1); 138 bestg=Alpha_pos(1,2); 139 bestGWOaccuarcy=Alpha_score; 140 %% 打印参数选择结果 141 disp('打印选择结果'); 142 str=sprintf('Best Cross Validation Accuracy = %g%%,Best c = %g,Best g = %g',bestGWOaccuarcy*100,bestc,bestg); 143 disp(str) 144 %% 利用最佳的参数进行SVM网络训练 145 cmd_gwosvm = ['-c ',num2str(bestc),' -g ',num2str(bestg)]; 146 model_gwosvm = svmtrain(train_wine_labels,train_wine,cmd_gwosvm); 147 %% SVM网络预测 148 [predict_label,accuracy] = svmpredict(test_wine_labels,test_wine,model_gwosvm); 149 % 打印测试集分类准确率 150 total = length(test_wine_labels); 151 right = sum(predict_label == test_wine_labels); 152 disp('打印测试集分类准确率'); 153 str = sprintf( 'Accuracy = %g%% (%d/%d)',accuracy(1),right,total); 154 disp(str); 155 %% 结果分析 156 % 测试集的实际分类和预测分类图 157 figure; 158 hold on; 159 plot(test_wine_labels,'o'); 160 plot(predict_label,'r*'); 161 xlabel('测试集样本','FontSize',12); 162 ylabel('类别标签','FontSize',12); 163 legend('实际测试集分类','预测测试集分类'); 164 title('测试集的实际分类和预测分类图','FontSize',12); 165 grid on 166 snapnow 167 %% 显示程序运行时间 168 toc